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ABSTRACT

Neural network algorithms have impressively demonstrated the
capability of modelling spatial information. On the other hand, the application of
parallel distributed models to processing of temporal data has been severely
restricted. This work introduces a novel technique which adds the dimension of
time to the well known backpropagation neural network algorithm. The paper
cites several reasons why the inclusion of automated spatial and temporal
associations are crucial to effective systems modelling. An overview of other
works which also model spatiotemporal dynamics is furnished. In addition, a
detailed description of the processes necessary to implement the space-time
network algorithm is provided. The reader is given several demonstrations
which illustrate the capabilities and performance of this new architecture.

INTRODUCTION

Throughout history, the meaning of time has plagued the minds of
mankind. The wise Greek philosophers, Socrates, Plato, and Aristotle pondered
deeply with what the influence of time had on human knowledge. The English
poet, Ben Johnson, wrote "O for an engine to keep back all clocks" giving voice
to our ageless lament over the brevity of human life. The great scientist,
Einstein, who developed the theory of relativity, believed that space and time
cannot be considered separately, but that they depend upon one another.

A need for space-time knowledge capture representation is clearly
evident. Human cognitive thought processes involve the use of both space and
time. A childhood event is remembered by an occurrence (or space) and its
associated place in time. We speak of an event which occurred a specific time
ago. Linguistic meanings are expressed in a manner in which proper temporal
order plays a crucial role in the conveyance of a concept. Take, for example, the
phrases "house cat" and "cat house". Speech production, too, is very order
dependent -- subtleties in intonations may change the whole meaning of a
concept. The more advanced engineering systems have characteristics which
vary over time. For instance, complex machines such as the Space Shuttle
Main Engine are abound with sensors, each varying over the life of the
machine's operation. A model which is capable of automatically associating
spatial information with its appropriate position in time becomes increasingly
significant.

Also, microscopic level investigations reveal a need to incorporate time
or sequence discovery and adaptation into the modelling framework. It is clearly
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evident that information exchange at the neuronal level occurs through a rich
interchange of complex signals. Freeman [3] and Baird [1] have done extensive
research on the olfactory bulb at anatomical, physiological, and behavioral
levels. Their findings have shown that information in biological networks takes
the form of space-time neural activity patterns. These dynamic space-time
patterns encode past experience, attempt to predict future actions, and are
unique to each biological network.

As seen in figure 1, the "classical" neuron has several dendrites which
receive information from other neurons. The soma or cell body performs a wide
range of functions; it processes information from the dendrites in a manner
which is not entirely understood and also maintains the cell's health. The
information processed by the neuron is distributed by its axon to other
interconnected neurons by the propagation of a spike or action potential. Along
each dendrite are thousands of protrusions where neurons exchange

information through a process known as synapse. The sy.naptic cleft releases
chemicals known as neurotransmitters. Even at this m_croscopic level, the
relevance for time adaptive neural networks becomes clearly evident. Synaptic
clefts take on roles such as neurotransmitter modulators, generators, and filters
which cloud the neuron's inner workings and render these ever changing
dynamical properties especially difficult to study.

Connectionist architectures have impressively demonstrated several
models of capturing spatial knowledge. To accomplish this, the most popular
solution has been to distribute a temporal sequence by forcing it into a spatial
representation. This approach has worked well in some instances [11]. But
there are problems with this approach and it has ultimately prove inadequate.

A REVIEW OF NEURAL NETWORKS

A network is comprised of numerous, independent, highly interconnected
processing elements. For backpropagation networks, each element can be
characterized as having some input connections from other processing
elements and some output connections to other elements. The basic operation
of an element is to compute its activation value based upon its inputs and send
that value to its output elements. Figure 2 shows a schematic of a processing
element. Note that this element has j input connections coming from j input
processing elements. Each connection has an associated value called a
weight. The output of this processing element is a non-linear transform of its
summed, continuous-valued inputs by the sigmoid transformation in (1) and (2).
Understanding the details of this transformation is not essential here; the
interested reader will find an excellent description of such details provided by

Rummelhart et. al.[8].
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Synapse

Figure 1 .... Schematized diagram of the classical neuron.

When groups of processing elements are arranged in sequential layers,
each layer interconnected with the subsequent layer, the result is a wave of
activations propagated from the input processing elements, which have no
incoming connections, to the output processing elements. The layers of
elements between the inputs and outputs take on intermediate values which
perform a mapping from the input representation to the output representation. It
is from these intermediate or hidden elements that the backpropagation network

draws its generalization capability. By forming transformations through such
intermediate layers, a backpropagation network can arbitrarily categorize the
features of its inputs.

Ei = Y-"wij Pj (1)

Pi = P (Ei ) = 1
1 + e-e, (2)
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Figure 2 .... Processing element in a backpropagation network.

THE WEIGHTS OF A BACKPROPA.GATION NETWORK

The heart of the backpropagation algorithm lies in how the values of its
interconnections, or weights, are updated. Initially, the weights in the network
are set to some small random number to represent no association between
processing elements. Upon being given a set of patterns representing pairs of
input/output associations, the network enters what is called a training phase.
During training, the weights are adjusted according to the learning technique
developed by Rumelhart et. al. The training phase is modelled after a
behavioristic approach which operates through reinforcement by negative
feedback. That is, the network is given an input from some input/output pattern
for which it generates an output by propagation. Any discrepancies found when
comparing the network's output to the desired output constitute mistakes which
are then used to alter the network characteristics. According to Rumelhart's
technique, every weight in the network is adjusted to minimize the total mean

square errors between the response of the network, Ppi, and the desired

outputs, tp/,to a given input pattern. First, the error signal, &i, is determined for
the output layer, N:

6i (N)= ( ti- Pi (N)) P '(Ei(N )) (3)
The indices p and i represent the pattern number and the index to a node
respectively. The weights are adjusted according to:

Aw, + pj(")= (4)

where Awi; n)" is the error gradient of the weight from the jth processing

element in layer n to the ith unit in the subsequent layer (n + 1). The parameter
a, performs a damping effect through the multi-dimensional error space by
relying on the most recent weight adjustment to determine the present
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adjustment. The overall effect of this weight adjustment is to perform a gradient
descent in the error space; however, note that true gradient descent implies

infinitesimally small increments. Since such increments would be impractical, r/
is used to accelerate the learning process. In general, then, the errors are
recursively back propagated through the higher layers according to:

J

where P'(E) is the first derivative of P(E).
(5)

OTHER SPATIOTEMPORAL NEURAL NETWORK ARCHITECTURES

Advances in capturing spatial temporal knowledge with neural network
architectures have been made by Jordan[4] and Elman[2]. Jordan approaches
this problem by partitioning the input layer in a connectionist network into
separate plan and state layers. In essence, Jordan's architecture acts as a
backpropagation network, except for the specialized processing elements in the
state layer, which receive their inputs from the output units, as well as from
recurrent connections which allow the state layer elements to "remember" the
network's most recent state. In other words, the state units behave as pseudo
inputs to the network providing a past-state history. Here, a recurrent connection
is one in which it is possible to follow a path from an element back onto itself as
shown in figure 3. Recurrent networks of this type allow the element's next state
to be not only dependent on external inputs, but also on the state of the network
at its most previous time step. For further discussion of this network's operation
refer to Jordan. In general, however, this network is trained to reproduce a
predetermined set of sequence patterns from a static input pattern. One of the
authors (Villarreal), used this network architecture extensively in developing a
speech synthesizer. The inputs to the speech synthesis network represented a
tri-phoneme combination and the output was partitioned to represent the
various vocal tract components necessary to produce speech. I.e., the output
layer in the speech synthesis neural network consisted of the coefficients to a
time-varying digital filter, a gain element, and a pitch element which excited the
filter, and a set of down-counting elements where each count represented a 100
millisecond speech segment. To train a single tri-phone set, the network was
first reset by forcing the activation value of the elements in the state layer to
zero, then a tri-phone pattern was presented to the network's input and held
there during the learning process while the outputs changed to produce the
appropriate output characteristics for that particular tri-phone combination. The
outputs would represent the transition from one phoneme to another while a
smooth transition in pitch, gain, and vocal tract characteristics would take place.
The process was then repeated for other tri-phone combinations.
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Input Layer
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Figure 3 .... The connection scheme for Jordan's network architecture
which learns to associate a static input with an output sequence.

Elman modifies Jordan's approach by constructing a separate layer,
called the Context Layer, which is equal In size to the number of units in the
hidden layer (see figure 4). However, the context units recelve their input along
a one-to-one connection from the hidden units, instead of from the output units
as described by Jordan. The process works as follows. Suppose there is a
sequential pattern to be processed. Initially, the activation values in the context
units are reset to a value midway between the upper and lower bounds of a
processing element's activation value, indicating ambiguous or don't care
states. A pattern is presented to the network's input, forward propagating the
pattern toward the output. At this point, the hidden layer activation levels are
transferred one-for-one to elements in the context layer. If desired, error
backpropagation learning can now take place by adjusting the weights between
output and hidden, hidden and input, and hidden and context layers. The
recurrent connections from the hidden to context layers are not allowed to
change. At the next time step, the network's previous state is encoded by the
activation levels in the context units. Thus, the context layer provides the
network with a continuous memory.
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Figure 4 .... With the Elman network, a history of the network's most
previous state is stored by transferring the activations in the hidden layer to the

pseudo input, context layer. Longer term memories are attainable by adding
recurrent connections to the context units.

DESCRIPTION OF THE SPACE-TIME NEURAL NETWORK

Another dimension can be added to the processing element shown in

figure 2 by replacing the synaptic weights between two processing elements
with an adaptable-adjustable filter. Instead of a single synaptic weight which
with the standard backpropagation neural network represented the association
between two individual processing elements, there are now several weights
representing not only association, but also temporal dependencies. In this case,
the synaptic weights are the coefficients to adaptable digital filters. The
biological implication of this representation can be seen when one considers
that synapses undergo a refractory period -- responding less readily to
stimulation after a response. Before proceeding with a description of the space-
time network, it is important to introduce digital filter theory and some
nomenclature.

DIGITAL FILTER THEORY REVIEW

Linear difference equations are the basis for the theory of digital filters.
The general difference equation can be expressed as:
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N M

y(n)= '_, blc.x(n-k)+ X aray(n-m)
k=o m=l (6)

Where the x and y sequences are the input and output of the filter and am'S and

bk'S are the coefficients of the filter. Sometimes referred to as an s-transform,
the well known continuous domain Laplace transform is an extremely powerful
tool in control system design because of its capability to model any combination
of direct current (DC) or static levels, exponential, or sinusoidal signals and to
express those functions algebraically. The s-plane is divided into a damping

component (o) and a harmonic component (jo)) and can mathematically be
expressed as

s = e'(a+m) (7)

This formulation has several interesting characteristics which should be noted:
• The general Laplace transfer function can be thought of as a rubber

sheet on the s-plane. A desirable transfer function is molded by
strategically placing a transfer function's roots of the numerator and the
denominator in their appropriate positions. In this case, polynomial roots
of the numerator are referred to as zeros and "pin" the rubber sheet to the
s-plane's ground. On the other hand, polynomial roots of the
denominator are referred to as poles and their locations push the rubber
sheet upwards -- much like the poles which hold up the tarpaulin in a
circus tent. Therefore, zeros null out certain undesirable frequencies and
poles can either generate harmonic frequencies (if close enough to the

joe axis) or allow certain frequencies to pass through the filter.
• Setting the damping coefficient, o, to zero is effectively similar to taking a

cross sectional cut along the jcz axis. This is the well known Fourier
transform.

• A pole on the j_axis, signifying no damping, will produce a pure
sinusoidal signal. However, a pole which travels onto the left half plane
of the s-plane exponentially increases, eventually sending the system
into an unstable state.

The discretized form of the Laplace transform has been developed
further and is referred to as the z-transform. The notation z -] is used to denote a
delay equal to one sampling period. In the s-domain, a delay of T seconds
corresponds to e-st. Therefore, the two variables s and z are related by:

z .1 =e-,r (8)
where T is the sampling period. The mapping between the variables can be
further illustrated by referring to figure 5. First notice that the left half plane of the
s-plane maps to the area inside a unit circle on the z-plane. In abiding with the
Nyquist criterion, sampling at least twice the signal bandwidth, fs, note that as

one traverses from -fs/2 to +fs/2 on the s-plane is equivalent to going from
radians toward 0 radians and back to g radians in a counterclockwise direction
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on the z-plane. Furthermore, note that lines in the s-plane map to spirals in the

z-plane.
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Figure 5 .... Pictorial relationship between the continuous domain s-plane
and discrete domain z-plane.

}'(z)
F(z)=x(z)

By evaluating the z-transform on both sides of the linear difference
equation, we can show that

N

_, bk z-k
k=O

M

1 - ___ amz m
,,,=1 (9)

Digital filters are classified into recursive and nonrecursive types. The
nonrecursive type have no feedback or recurrent paths and as such all the a m

terms are zero. Furthermore, digital filters are also classified in terms of their
impulse responses. Because nonrecursive filters produce a finite number of
responses from a single impulse, such filters are referred to as Finite Impulse
Response (FIR) filters. On the other hand, the recursive filters produce an infinite
number of responses from an impulse and are therefore referred to as Infinite
Impulse Response (IIR) filters. For example, if a unit impulse is clocked through
the filter shown in figure 6(a), the sequence

bo, bl, b2 ...... bM, O, O, O, O, O, .... O, O, 0
will be output. Notice that the filter produces only the coefficients to the filter
followed by zeroes. However, if a unit impulse is presented to the filter shown in
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figure 6(b), because of the recursive structure, the response is infinite in
duration.

FIR and IIR filters each possess unique characteristics which may make
one more desirable over another depending on the application. To summarize,
the most notable of these characteristics include:

• FIR filters, because of their finite duration are not realizable in the analog
domain. IIR filters, on the other hand, have directly corresponding
components in the analog world such as resistors, capacitors, and
inductive circuits.

• IIR filters cannot be designed to have exact linear phase, whereas FIR
filters have this property.

• Because of their recursive elements, IIR filters are orders of magnitude
more efficient in realizing sharp cutoff filters than FIR filters.

• Because of their nonrecursiveness, FIR filters are guaranteed stable. This
property makes FIR filters much easier to design than FIR filters.

These different properties between FIR and IIR filters must be carefully weighed
in selecting the appropriate filter for a particular application.
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Figure 6 .... (a) Digital network for FIR system; (b) Digital network for IIR
system

DESCRIPTION OF THE SPACE-TIME NEURAL NETWORK - CONTINUED

Having introduced digital filter theory, it is now possible to continue with
the description of the space-time neural network. What follows is a detailed
procedure for constructing and training the space-time neural network. As
mentioned earlier, the space-time neural network replaces the weights in the
standard backpropagation algorithm with adaptable digital filters. The
procedure involves the presentation of a temporal ordered set of pairs of input
and output vectors. A network consisting of at least two layers of adaptable
digital filters buffered by summing junctions which accumulate the contributions
from the subsequent layer is required. A pictorial representation of the space-
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time processing element is illustrated in figure 7. In this case, a value, say xj(n),
is clocked in to its associated filter, say Hji(n), producing a response yj(n)
according to the filter representation

M N

yj(n) = E amjyj(n- m) + _ bkjxj(n - k)
m=Z k=O (10)

All remaining inputs are also clocked in and accumulated by the summing
junction i:

Si(n) = E yj(n)
allj (1 1 )

The contributions from the signals fanning in to the summing junction are then
non-linearly transformed by the sigmoid transfer function

pi(Si(n)) = 1
1 + e-S,(n) ( 1 2)

This output is then made available to all filter elements connected downstream.

,t ,,,mtJ]llllllh
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,' ',,,,-i l llrl,0
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Figure 7 .... A pictorial representation of the Space-Time processing
element.

It was earlier discussed that the space-time network is comprised of at
least two layers of filter elements fully interconnected and buffered by sigmoid
transfer nodes at the intermediate and output. A sigmoid transfer function is not
used at the input. Forward propagation involves presenting a separate
sequence dependent vector to each input, propagating those signals
throughout the intermediate layers as was described earlier until reaching the
output processing elements, in adjusting the weighting structure to minimize the
error for static networks, such as the standard backpropagation, the solution is

straightforward. However, adjusting the weighting structure in a recurrent
network is more complex because not only must present contributions be
accounted for but contributions from past history must also be considered.
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Therefore, the problem is that of specifying the appropriate error signal at each
time and thereby the appropriate weight adjustment of each coefficient

governing past histories to influence the present set of responses.

dUll.

Figure 8 .... A representation of a fully connected network utilizing Space-
Time processing elements. This depicts a set of input waveform sequences

mapped into an entirely different output waveform sequence.

The procedure for adjusting the weighting structure for the space time
network follows. First compute the errors at the output layer for each processing
element, i,

_i = (Di(k) - Ai(k)) P'(Ei(k)) (13)

where:

Di(k)

Ai(k)

P'(Ei(k))

is the kth desired response from a given sequence
for neuron i at the output layer

is the network's output response at neuron i for the
kth input sequence pattern
is the first derivative of the sigmoid function for the

ith output's activation value or ?(Ei(k))( 1 -P(Ei(k))

Now to compute the updates for the coefficients each filter element between the
hidden and output layer neurons, a reversal procedure is implemented.
Whereas in the forward propagation, input values were clocked into the filter
elements, here, backpropagation instead involves the injection of errors into the
filter elements according to:

,dbijt.(n + 1) = a[rldbij_(n) + (I - rl)6iXijd (14)
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where:

Abijt.(n + 1)

Abiidn)

rl

&
X tjk

is the update for a zero coefficient, bk, lying
between processing elements/and j
is the learning rate

is the most recent update for the kth zero element
between processing elements i and j

damps most recent updates

is described by (13)

contain a history of the activation values for the
non-recursive filter elements between neurons i
and j, k time steps ago

The recursive components in each filter element are treated the same way and
are updated according to:

where"
z_iign + ]) = a[rl_ijgn) + (]- rl)aiYi_d (15)

,aa_je(n+ 1)

Ol

Aau/En)

17

8i
Y i.ik

is the update for a zero coefficient, bk, lying
between processing elements/and j
is the learning rate

is the most recent update for the kth zero element
between processing elements/and j

damps most recent updates

is described by (13)

contain a history of the activation values for the
non-recursive filter elements between neurons i

and j, k time steps ago

For implementation purposes, the present algorithm only considers the
accumulation of errors which span the length of the number of zeroes, nZho,
between the hidden and output neurons.

IIZho

aik= p '(Ei,,)Z8p,xii,,
k=o J (16)

where:

i

J
a,i

is the index of the hidden neuron
ranges over the neuron indices for the output layer

is the accumulated error for the ith neuron in the

hidden layer
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P '(Aik)

J

is the first derivative of the sigmoid function for the
kth history of activation levels for the ith neuron in
the hidden layer

sums the results of injecting the previously
computed errors found in equation (13) through

the FIR portion of the filter element, XJik, found
between the ith neuron in the hidden layer and the
jth neuron in the output layer.

Simulations

The first simulation is a variation of the classic XOR problem. The XOR is
of interest because it cannot be computed by a simple two-layer network.

Ordinarily, the XOR problem is presented as a two bit input combination of (00,
01, 10, 11) producing the output (0, 1, 1,0).

This problem can be converted into the temporal domain in the following
way. The first bit in a sequence XOR'd with the second bit will produce the
second bit in an output sequence, the second bit XOR'd with the third will
produce the third in an output sequence, and so on.

Input 1 0 1 0 1 0 0 0 0 1 1 ...................
Output 0 1 1 1 1 1 0 0 0 1 0 ...................

In the simulation, the training data consisted of 100 randomly generated
inputs and the outputs constructed in the manner described above. A network
was constructed which had 1 input, 6 hidden elements, 1 output unit, 5 zero
coefficients and 0 pole coefficients in the input to hidden layer, and 5 zero
coefficients and 0 pole coefficients in the hidden to output layer. The task of the
network was to determine the appropriate output based on the input stream.
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Figure 9 .... Error curve for the temporal XOR problem trained on a 1 input, 5
hidden, 1 output, 5 zeros and 0 poles in input to hidden layer, and 5 zeros and 0

poles in the hidden to output layer.

For the second simulation, a network with 2 input units, 8 hidden units, 8
output units, 5 zeros - 0 poles between input to hidden, and 5 zeros - 0 poles
between hidden to output was constructed. One of the authors (Shelton)
constructed a problem, called the Time Dependent Associative Memory Test,
which would test the network's ability to remember the number of events since
the last trigger pattern was presented. The data consisted of 1000 input output
pairs where the input bits were randomly constructed and the output
appropriately constructed. As an example, consider the first 7 sets of data in the
list. Note that a "1" bit sequentially gets added to the output for the input patterns
0 0, 1 0, 1 0, 0 0, 1 0, and 0 1 until the 1 1 pattern is presented which resets the
output back to the 1 0 0 0 0 0 0 0 state.
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Input

00
10
10
00
10
01
11
10
10
11
10
01
11

Output

11000000
11100000
11110000
11111000
11111100
11111110
1O000000
11000000
11100000
10000000
11000000
11100000
10000O0O
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Figure 10 .... Error curve for a 2 input, 8 hidden, 8 output, 5 zero - 0 pole
between input to hidden, and 5 zero - 0 pole between hidden to output network

operating on the
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